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Table 1. Elastic scattering of 1 5 0  neutrinos 

4 E )  (em2) 
Energy of 

Calculated rate 
RI x loa day-l 

re& current- photon- 
electron current-current photon-neutrino current neutrino 

( E  in MeV) coupling theory coupling theory coupling coupling 
theory theory 

1 a 0  9 ~ 1 0 - 4 5  2.06 x 10 - 4 6  135  3.1 
1.25 8.33 x 10-45 1 .os x 10 - 4 6  125 1.6 
1.5 6.75 ~ 1 0 - 4 5  6.60 x 10 -47 101 1 *o 
1.74 5.32 ~ 1 0 - 4 5  4.82 x 10-47 80 0.7 
2-24 1.81 ~ 1 0 - 4 5  3 .13  ~ 1 0 - 4 7  27 0.5 

RI = a,(E)Nf, N = 5 x1OZ8 target electrons, f = predicted neutrino flux from CNO 
cycle = dV (I3N) = d. ( 1 5 0 )  = 3.5  x 1O1O s - l .  

generated by mesons in the laboratory as proposed by Davis (1971, private communi- 
cation). 

We conclude that the experiment as suggested in this paper and the final con- 
clusion from the solar neutrino experiment of Davis et al. (1968) not only determines 
the nature of weak interactions but also gives us a clue in determining whether our 
present sun burns in the pp or CNO cycle. 

I should like to thank P. Bandyopadhyay for helpful discussions. 
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Explosive instability in a collisionless shock 

Abstract. It is pointed out that, in the configuration of a perpendicular 
collisionless shock, a resonant interaction is possible between a negative 
energy Bernstein mode and two positive energy ion acoustic modes. An estimate 
is made of the growth rate of the resulting explosive instability. 

Recently, a number of authors have investigated the drift cyclotron instability, 
which occurs when electrons drift relative to ions in a direction perpendicular to 
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magnetic field lines in a plasma (Wong 1970, Gary and Sanderson 1970, Forslund 
et al. 1970). It has been pointed out by Lashmore-Davies (1970) that the instability 
arises because Bernstein modes, which are Doppler shifted because of the electron 
drift, can have negative energy. 

Now, examination of the dispersion curves for these Bernstein modes and the 
ion acoustic modes, as plotted by Gary and Sanderson (1970) for example, shows that 
it is possible to find a Bernstein mode of frequency w and wavenumber k, together 
tvith two ion acoustic waves of frequencies w‘ and w”, and wavenumbers k‘ and k 
such that the relations 

w = w ’ + w N  (1) 
k = k‘+k” (2) 

are satisfied. Since the propagation properties of the ion acoustic waves are, to a 
good approximation, isotropic, the conditions (1) and (2) can be satisfied whenever 
the frequency of a negative energy Bernstein wave is greater than that of the ion 
acoustic wave of the same wavelength. 

Thus, we have resonant coupling between a negative energy wave and two positive 
energy waves, under which conditions it is known that an explosive instability can 
occur (see, for example, Coppi et al. 1969). I n  this letter we estimate the growth rate 
due to this instability. 

The  strength of the resonant wave interaction depends on a coupling coefficient 
Vk,k,,ktt ,  defined in Coppi et al. (1969), whose calculation involves an iterative 
solution of the Vlasov equation. We use the same geometry as Gary and Sanderson 
(1970), so that the zero order electron distribution function is just a displaced max- 
wellian with average velocity vo along the y axis. Calculation of the exact expression 
for T‘k,kt,ktt is straightforward, but the result is not very illuminating. I n  order to 
obtain a simple estimate of the growth rate we will therefore make a number of 
approximations from the outset of the calculation. 

Since the Bernstein mode is an electron mode, we neglect the ions. According to 
Gary and Sanderson (1970), the first order perturbation to the electron distribution 
is 

In  the case of the ion waves, we shall assume that the resonant denominators in (3) 
do not give a large contribution. Also, in perpendicular shocks (the main area of 
application of this theory) 

k,ve/Qe 9 1 (4) 

so that the Bessel functions are small over most of the significant range of vl. We 
therefore put 

and similarly for f k , , ( l ) .  This is equivalent to assuming the electrons to be isothermal 
so far as ion acoustic waves are concerned. 

The  second order perturbation to the electron distribution function corresponding 
to the wavenumber k = k’ + k” is then easily found and the coupling coefficient T‘ 
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can be evaluated, the result being 

where ~ ( k ,  w )  is the dielectric function for the Doppler shifted Bernstein modes. 
Since w and k are the frequency and wavenumber of a Bernstein mode, ~ ( k ,  w )  
vanishes. 

T o  evaluate the denominator in (6 )  we assume that we have a Bernstein mode with 

w - k .  vo NnQ, (7) 
and pick out the resonant term in E corresponding to this mode. Using (7) and the fact 
that E(k, w )  vanishes we find that 

where A D  is the Debye length, and 

We have also used the fact that, in view of the inequality (4), Sn 4 1. 
For the ion sound waves we assume that the B = 0 disperson relation is a good 

approximation, so that aE 2 1 
1+ - awk. d kt2AD2) 

and similarly for a u k , , .  

The kinetic equations for the waves are of the form 

-- aNk - h 2 sk, ,+k.lv&,k~,k[la(N&’Nk”+N&N&’+NkNk”)S(Wfw’+ U”) (11) 
at k’,&” 

(Coppi et al. 1969). If we approximate S(w + w’ + w”) by l/y, where y is the growth 
rate of the nonlinear instability, and assume that 

(12) 

(13) 

1 
k 2i k’ N- k” N- - 

A D  
then we can estimate y as 

y N- (WnQe&J1’2 (noT.)1i2 - 
where no is the electron density and E is the energy density of the interacting modes. 

A comparatively small ratio of E to nOTe is sufficient to make the growth rate 
of equation (13) comparable to the linear growth rate of ion acoustic waves propa- 
gating away from the direction perpendicular to the magnetic field (Gary 1970). It 
is possible, then, that the nonlinear instability described here may play some role in 
establishing the experimentally observed acoustic turbulence in a collisionless shock 
(Daughney et al. 1970). 

Department of Applied Mathematics 
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Fife, Scotland 
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Fluid order and freezing 

Abstract. Computer calculations have been performed to investigate the 
short range order near the freezing point, for fluids of particles interacting 
with an inverse twelfth power potential and with the Lennard-Jones potential. 
For these potentials, it is found that the onset of freezing is marked by the 
number of neighbours within a certain radius exceeding that of a close packed 
system of rigid spheres of a diameter determined by the free energy minimi- 
zation procedure of Mansoori and Canfield. 

Recently, evidence of an upper bound on the density for the stability of a hard 
sphere fluid has been pointed out (Hutchinson and Conkie 1971). This bound 
appears to be related to the phase transition in that system. 

The bound is obtained by considering a function N(R) which gives the mean 
number of neighbouring particles contained within a sphere of radius R about any 
given particle 

R 

N(R) = 47in r2g(r) dr (1) 
0 

where g(r )  is the pair distribution function and n is the number density. I t  is 
intuitively obvious that for hard spheres N(R) cannot exceed Nc(R), its value for the 
hcp close packed solid, at any value of R. It has been observed, from computer 
results (Hutchinson and Conkie 1971) that in the region of the hard sphere (freezing 
point) transition the fluid N(R) approaches Nc(R) of the close packed solid at a 
value of R corresponding to the third neighbour distance. 

The question arises as to whether this result is unique to hard spheres or if it has 
a more general bearing on the liquid-solid transition. T o  investigate this, we have 
studied N(R) for systems of particles interacting with the potentials 

and 

The melting curves for both these potentials have been determined accurately by 
Monte Carlo methods (Hoover et al. 1970 and Hansen 1970). It should be noted 
that the potential of equation (2) is effectively the high temperature form of (3). N(R) 
was calculated using the Harwell molecular dynamics program (Beeman and 
Schofield, unpublished) using 500 particles. 


